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By introducing an electron bath that represents the chemical environment in which a chemical species is
immersed, and by making use of the second-order Taylor series expansions of the energy as a function of the
number of electrons in the intervals betweenN - 1 andN, andN andN + 1, we show that the electrodonating
(ω-) and the electroaccepting (ω+) powers may be defined asω- ) (µ-)2/2η-, whereµ- are the chemical
potentials andη- are the chemical hardnesses, in their corresponding intervals. Approximate expressions for
ω- andω+ in terms of the ionization potentialI and the electron affinityA are established by assuming that
η- ) η+ ) η ) µ+ - µ-. The functionsω-(r ) ) ω-f -(r ), wheref -(r ) are the directional Fukui functions,
derived from a functional Taylor series for the energy functional truncated at second order, represent the
local electrodonating and electroaccepting powers.

1. Introduction

Charge-transfer models based on the second-order Taylor
series expansion of the energy as a function of the number of
electrons, around a reference state, have proven to be very useful
to qualitatively describe and understand fundamental aspects
of chemical interactions driven by donor-acceptor processes.1-10

In these models, the energy change∆E due to the electron
transfer∆N, when the external potentialV(r )is kept fixed, is
approximated by

where µ ) (∂E/∂N)V is the chemical potential andη )
(∂2E/∂N2)V is the chemical hardness.

Following this approach, Parr, Von Szentpa´ly, and Liu,4

prompted by the work of Maynard et al.,11 have defined the
electrophilicity index that measures the energy change of an
electrophile when it becomes saturated with electrons, by
considering the case when an electrophilic species is immersed
in an idealized zero-temperature free electron sea of zero
chemical potential. In such situation, the species becomes
saturated with electrons when its chemical potential becomes
equal to that of the electron sea. At this point, the maximum
electron transfer is given by∆Nmax ) -µ/η > 0, and the energy
change becomes∆E ) -µ2/2η < 0, which suggests the
definition of the electrophilicity as

Thus, although the electron affinity measures the capability of
a chemical system to accept one electron from a donor, the
electrophilicity is related to the maximum amount of the electron
flow that may be either less or more than 1, and it is given in
terms of fundamental quantities that govern small changes away

from an initial reference state. The finite differences approxima-
tions to the derivatives of eq 1,

imply that the electrophilicity may be approximated by

where it is clear that this global reactivity index depends not
only on the electron affinity,A, but also on the ionization
potentialI.

However, it is important to note that due to the behavior of
the energy as a function of the number of electrons at zero
temperature,12 the first derivativeµ evaluated at some integral
value ofN will, in general, have one value when evaluated from
the left, and a different value when evaluated from the right.
That is,µ+ ) (∂E/∂N)V

+ ) -A, andµ- ) (∂E/∂N)V
- ) -I. Also,

at zero temperature, the second derivative is 0 when the
derivatives are taken from the right or the left, and it is infinite
when a central difference formula is used. However, Ayers and
Parr13 have shown that some information remains, because
η(M) ) (µ+ - µ-)δ(M - N) for N - 1 < M < N + 1.

In spite of the mathematical difficulties associated with the
discontinuities, from the chemical perspective, it makes sense
to differentiate the response of the system to charge donation,
from the response to charge acceptance, a situation that indicates
that the left and right derivatives of the energy with respect to
the number of electrons could be different. However, although
such differentiation has always been recognized for the case of
the Fukui functions,14 where f -(r ) characterizes the sites for
electrophilic attack, andf +(r ) characterizes the sites for
nucleophilic attack, it has not been considered, until recently,15

for the cases of the chemical potential and the chemical hardness.
In studies of reactivity trends based on these quantities, as
defined in density functional theory, a single value forµ and a
single value forη are used to describe charge donating and
charge accepting processes. This situation is due to the fact that
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∆E ) µ∆N + 1
2
η(∆N)2 (1)

ω ≡ µ2/2η (2)

µ ) -(I + A)/2 and η ) I - A (3)

ω ≈ (I + A)2

8(I - A)
(4)
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the linear interpolation mentioned above obliterates second-order
effects, so to include them, one makes use of a smooth
interpolation around the reference point, like the quadratic one
given by eq 1, that does not distinguish one response from the
other one.

The objective of the present work is to elaborate on the
concept of electrophilicity, as another specific application of
the use of different response functions for the addition and
subtraction of charge, to show the importance of such distinction.

Thus, we will first establish, from a general point of view,
through a simple charge-transfer model, the global response of
a chemical species when it is immersed in an idealized bath
that may either withdraw or donate charge. Then, an alternative
quadratic interpolation for the energy as a function of the number
of electrons will be proposed to evaluate the response of a
system to charge withdrawal or charge acceptance in terms of
the ionization potential and the electron affinity. Finally, through
the use of a functional Taylor series for the energy functional,
the local response functions for charge withdrawal or charge
acceptance will be derived.

2. Response of a System to Charge Donation and Charge
Acceptance

The first ionization potential and the electron affinity are
properties of a system that allow one to measure its propensity
to donate or accept one electron. However, let us consider that
we are interested in analyzing, through an energy change index,
the propensity of a given chemical species to donate or accept
fractional amounts of charge when it is immersed in a certain
chemical environment. In this context, one may invoke the
second-order Taylor series expansion of the energy as a function
of the number of electrons around a reference state, eq 1.
However, to distinguish between the charge donating and the
charge accepting situations, through the intrinsic properties of
the chemical species that govern small changes away from an
initial reference state, we assume that for the interval between
N - 1 andN, eq 1 adopts the form

whereas for the interval betweenN andN + 1, it takes the form

That is, in eqs 5 and 6 one explicitly recognizes that the first
and second derivatives at the reference state can be different
when evaluated from the left or from the right. However, it is
important to note that within the zero-temperature grand
canonical ensemble formulation of density functional theory,
the energy as a function of the number of electrons consists of
a series of straight lines connecting the ground state energies
of integer numbers of particles.12 This situation implies that the
second derivatives in eqs 5 and 6 are equal to 0. Nevertheless,
because the second-order terms contain important information
from the chemical perspective, we assume that there exists a
quadratic interpolation between integer values of the number
of electrons that differentiates between the left and the right
derivatives.

Now, to simulate the chemical environment, one may use
the concept of an electron bath with chemical potentialµbath in
which the chemical species is immersed. In this case, the
chemical species is an open system that can exchange electrons
with the bath, and the change in its grand potential is given

by16,17 dΩ- ) dE- - µbathdN. For differential changes,
dE- ) µ- dN, and due to the equilibrium and stability
conditions, one has that dΩ- ) (µ- - µbath) dN e 0; therefore,
the value ofµbathdetermines the direction of the flow of charge.
That is, whenµbath > µ+, the system accepts charge from the
bath, increasing its chemical potential until it reaches the value
µbath, and whenµbath < µ-, the system donates charge to the
bath, decreasing its chemical potential until it reaches the value
µbath.

Thus, because we are interested in the situation corresponding
to small energy changes produced by the environment in which
the species is immersed,µbathshould take a value that lies close
to µ-, when one measures the propensity to donate charge, and
it should take a value that lies close toµ+, when one measures
the propensity to accept charge. Therefore, by noting that both
µ- andµ+ are negative quantities, one may assume that in the
first caseµbath) R-µ-, whereR- > 1 is a constant whose value
should be slightly greater than 1 to ensure thatµbath < µ-, and
in the second caseµbath ) R+µ+, whereR+ < 1 is a constant
whose value should be slightly lower than 1 to ensure that
µbath > µ+.

Then, because∆Ω- ) ∆E- - µbath∆N, with ∆E- given by
eq 5 or 6, the equilibrium point may be obtained by minimizing
the change in the grand potential with respect to the amount of
transferred charge. This procedure leads, for the charge donating
process, to∆N- ) (R- - 1)µ-/η-, and to the energy change

becauseR- > 1, indicating that the charge donating process is
energetically unfavorable. On the other hand, for the charge
accepting process, the above procedure leads to∆N+ )
(R+ - 1)µ+/η+, and to the energy change

becauseR+ < 1, indicating that the charge accepting process is
energetically favorable.

Now, becauseR is a constant that characterizes the bath, one
can define, from eq 7, the electrodonating power as

and, from eq 8, the electroaccepting power as

At this point, it is important to note that the same procedure
outlined to derive eqs 9 and 10, could have been used with eq
1 instead of eqs 5 and 6. Because in such a case,µ- ) µ+ )
µ and η- ) η+ ) η, the original electrophilicity index is
recovered,ω- ) ω+ ) ω ) µ2/2η. However, through the
present approach, one can see that the definition of electrophi-
licity is not necessarily linked to the point at which the species
becomes saturated with electrons (µ ) µbath ) 0). That is, eq 2
or eqs 9 and 10 establish that the electrodonating and the
electroaccepting powers may be quantified in terms of the
chemical potential and the chemical hardness, independently
of the fractional amount of charge donated or accepted.
However, it is important to note that whereas in the case of the

∆E - ) µ-∆N + 1
2
η-(∆N)2 (5)

∆E + ) µ+∆N + 1
2
η+(∆N)2 (6)

∆E- )
((R-)2 - 1)(µ-)2

2η- > 0 (7)

∆E+ )
((R+)2 - 1)(µ+)2

2η+ < 0 (8)

ω- )
(µ-)2

2η- (9)

ω+ )
(µ+)2

2η+ (10)
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electroaccepting power∆E < 0, so that the larger values imply
a larger capability to accept charge, in the case of the
electrodonating power∆E > 0, so that the smaller values imply
a larger capability to donate charge.

3. Alternative Interpolation of the Energy as a Function
of the Number of Electrons

The combination of eqs 1 and 3 corresponds to the case when
one carries out a smooth quadratic interpolation between the
pointsE(N - 1), E(N), andE(N + 1), which implies that the
energy and its derivatives are continuous functions of the number
of electrons aroundN. That is, in the case of eq 1 one has just
one parabola, where the two derivatives,µ and η, may be
determined from the two conditionsE(N - 1) - E(N) ) I, and
E(N) - E(N + 1) ) A, leading to eq 3.

However, in the case of eqs 5 and 6 one has different
parabolas in the two intervals that have different slopes,µ- and
µ+, and different curvaturesη- and η+ at N. Therefore, in
addition to the energy differences related withI andA, one needs
two additional relationships, to determine the values of the two
slopes and the two curvatures.

Now, by taking into account that the differentiation of the
response of the system to charge donation, from the response
to charge acceptance is important from the chemical viewpoint,
and that the direction of flow of charge is fundamentally driven
by the chemical potential, a new interpolation with these
characteristics may be derived by assuming thatη- ) η+ ) η,
and thatη ) µ+ - µ-. Consequently, through the use of these
two relationships together with the energy differences forI and
A, one finds that

Certainly, according to what we established in the previous
sections, the distinction betweenη- and η+ would also be
desirable, but nevertheless, through these assumptions one can
see that the hardness remains proportional to (I - A), and that,
although µ- (the chemical potential governing the charge
donation process) gives more emphasis to the ionization
potential than the electron affinity,µ+ (the chemical potential
governing the charge accepting process) shows the opposite
behavior by giving more emphasis to the electron affinity than
the ionization potential, in contrast with eq 3, which gives equal
emphasis toI and A in both processes. Thus, through this
approach one is able to differentiate, at least partially, charge
addition from charge subtraction, and at the same time, it is as
simple as the smooth one parabola interpolation in the sense
that it allows one to express all the parameters in terms of the
ionization potential and the electron affinity.

In Figure 1 one can see that the present interpolation scheme,
with three parameters, instead of two, is closer to the straight
lines connecting the integerN values. Hence, this procedure
not only allows one to differentiate the charge accepting from
the charge donating processes but also provides a reasonable
approximation to calculate small changes away from an initial
reference state.

Now, with respect to the indexes expressed in eqs 9 and 10,
using eq 11 one finds that the propensity to donate charge, or
electrodonating power, in the present interpolation is given by

and that, the propensity to accept charge, or electroaccepting
power, is given by

In comparison with eq 4, eq 13 gives more emphasis to the
electron affinity, indicating thatω+ will have a better correlation
with A thanω. This situation is confirmed in Figure 2, where
it may be seen that theω+ values show less dispersion than the
ω values for the 61 atoms and 55 molecules reported in
the work of Parr, Von Szentpa´ly, and Liu.4 The behavior of the
two expressions, eq 4 and eq 13, may be analyzed by performing
a binomial expansion, assuming thatI . A, and retaining the
zeroth- and first-order terms. This way one finds that for eq 4,
ω ≈ (3/8)A + (1/8)I + ..., whereas for eq 13,ω+ ≈ (7/16)A +
(1/16)I + .... Thus, one can see that the weight ofI is lower in
eq 13 than in eq 4, and that the weight ofA is larger in eq 13
than in eq 4, leading to a better correlation, specially in the
region whereA is small.

Just asω and ω+ are correlated with the electron affinity,
one could expect, from the analysis presented in section 2, that
ω and ω- should also show some degree of correlation with
the ionization potential. In Figure 3, one can see that indeed
there is some correlation. Additionally, they both follow the
same trends ofI. The behavior of the two expressions, eq 4
and eq 12, can also be analyzed in terms of the binomial
expansion forI . A, and retaining the zeroth- and first-order
terms. In this case one finds that for eq 4, again,ω ≈ (1/8)I +
(3/8)A + ..., whereas for eq 12,ω- ≈ (9/16)I + (15/16)A + ...,
which shows that the slope will be greater for eq 12, as can be
observed in Figure 3, and that the dispersion for eq 12 will be
greater because it gives more weight to the electron affinity
values, a situation that can also be observed in Figure 3.

4. Local Electrodonating and Electroaccepting Powers

Although global reactivity criteria provide information of the
behavior of a chemical species as a whole, local reactivity

Figure 1. Plot of the total energy as a function of the number of
electrons for the fluorine atom. Straight lines represent the exact
values (ref 11), open diamonds correspond to the one parabola model,
eqs 1 and 3, and solid squares correspond to the two parabola model,
eqs 5, 6, and 11.

ω+ ≡ (µ+)2

2η
≈ (I + 3A)2

16(I - A)
(13)

η ) 1
2
(I - A) µ- ) - 1

4
(3I + A) µ+ ) - 1

4
(I + 3A)

(11)

ω- ≡ (µ-)2

2η
≈ (3I + A)2

16(I - A)
(12)
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criteria provide information about the behavior of specific sites
within a molecule, which is very important to study reactivity
and selectivity trends.

Thus, to derive the local expressions associated with the
electrodonating and electroaccepting powers, let us analyze the
energy change for the case in which the chemical species is
immersed in the electron bath, starting from the functional
Taylor series for the energy functional,

Now, we assume, as in the case of eqs 5 and 6, that one can
truncate the series at second order and differentiate between
the left and right derivatives. Thus, for the addition of a small
fraction of charge,∆N, to theN0-electron system with external

potentialV0(r ) and exact ground-state densityFN0(r ), one has
that

whereEV0[FN0] is the exact ground-state energy,

is the chemical potential and it is constant throughout the whole
space,

is the hardness kernel, and

Now, Ayers and Parr13 have established that because for a given
value of ∆N, the first two terms in eq 15 are independent of
the position, then, the best way to add a fraction∆N of an
electron to a molecule is to add it to the place defined by the
function∆F(r ) that minimizes the last term in eq 15. This way
they have shown that the minimizing function is the Fukui
function, f +[FN0;r ] ) (∂FN0(r )/∂N)V

+, so that

and they have recovered the known result

Thus, substituting eqs 19 and 20 in eq 15, the energy change
can be expressed in the form

and because∫f +[FN0;r ] dr ) 1, one can see that eq 21 reduces
to eq 6. However, eq 21 implies that one can define a local
energy change per unit volume associated with the addition of
a fraction∆N of an electron given by

By an analogous reasoning, the local energy change per unit
volume for the removal of a fraction∆N of an electron will be
given by

Therefore, using the results of section 2 for the quantity in
parentheses in the right-hand side of eqs 22 and 23, one finds
that the local electrodonating powers may be expressed as

and that the local electroaccepting power is given by

Figure 2. Correlation between the electroaccepting power and the
electron affinity of 61 neutral atoms and 55 molecules (values in
electronvolts taken from ref 4), open diamonds correspond to
eq 4, and solid squares correspond to eq 13.

Figure 3. Correlation between the electrodonating power and the
ionization potential of 61 neutral atoms and 55 molecules (values in
electronvolts taken from ref 4), open diamonds correspond to eq 4,
and solid squares correspond to eq 12.

EV0
[F0+∆F] ) EV0

[F0] + ∫δEV0
[F0]

δF(r )
∆F(r ) dr +

1
2∫∫ δ2EV0

[F0]

δF(r ′) δF(r )
∆F(r ) ∆F(r ′) dr dr ′ + ... (14)

EV0

+[FN0
+∆F] ) EV0

[FN0
] + ∫µ+[FN0

] ∆F(r ) dr +
1
2∫∫η+[FN0

;r ,r ′] ∆F(r ) ∆F(r ′) dr dr ′ (15)

µ+[FN0
] ) (δE[FN0

]/δF(r ))+ (16)

η+[FN0
;r ,r ′] ) (δ2E[FN0

]/δF(r ) δF(r ′))+ (17)

∆N ) ∫∆F(r ) dr > 0 (18)

∆F(r ) ) ∆Nf +[FN0
;r ] (19)

η+[FN0
] ) ∫f +[FN0

;r ′] η+[FN0
;r ,r ′] dr ′ (20)

∆E + ) EV0

+[F0+∆F] - E0[FN0
] )

∫(µ+[FN0
]∆N + 1

2
η+[FN0

](∆N)2)f +[FN0
;r ] dr (21)

∆ε
+(r ) ) (µ+[FN0

]∆N + 1
2
η+[FN0

](∆N)2)f +[FN0
;r ] (22)

∆ε
-(r ) ) (µ-[FN0

]∆N + 1
2
η-[FN0

](∆N)2)f -[FN0
;r ] (23)

ω-(r ) )
(µ-)2

2η-
f -[FN0

;r ] ) ω-f -[FN0
;r ] (24)

ω+(r ) )
(µ+)2

2η+
f +[FN0

;r ] ) ω+f +[FN0
;r ] (25)
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and because the integral of the Fukui function is equal to
1, then∫ω-(r ) dr ) ω-.

It is important to mention that a local extension of the
electrophilicity index has been proposed by Cedillo and
Contreras,18 by making use of the minimization procedure of
Ayers and Parr, for the distribution of the charge∆Nmax )
-µ/η, however, they did not considered the functional expan-
sion. Also, an expression similar to eq 25 for the regional
electrophilicity, using the condensed Fukui, was proposed by
Pérez et al.,19 and its generalization, the philicity concept of
Chattaraj, Maiti, and Sarkar20 is equal to the result expressed
in eqs 24 and 25, whenω- ) ω+ ) ω. However, in both cases,
the Fukui function is incorporated by multiplying the global
index by the integral of the Fukui function, because the latter
integrates to 1. In contrast, in the present approach, the Fukui
function appears as a consequence of the variational principle
of Chattaraj, Cedillo, and Parr,21 in the minimization procedure
of Ayers and Parr.13 Thus, the present derivation strengthens
the local philicity concept, which has proven to be very useful
to explain the behavior of a wide variety of chemical species
under different circumstances.22-35 It is important to mention
that for intramolecular reactivity sequences, philicity indices do
not provide additional information to the one obtained from local
softness or Fukui function indices,30 and for intermolecular
reactivity trends, philicity indices can be used only in limited
cases.34

5. Concluding Remarks

The analysis presented in this work, for the specific case of
the measure of the propensity of a system to donate or accept
charge, seems to indicate that, from a chemical perspective, the
distinction between the left and right derivatives may be very
important, not only for the Fukui functions but also for the
chemical potential and the chemical hardness. Certainly, one
must carry out further studies in this direction.

With respect to the elaboration on the electrophilicity concept,
there are three conclusions that can be established from the
analysis presented in this work. The first one is related to the
response of a chemical species to donate or accept charge. Our
analysis shows that through the appropriate definition of a bath,
representing the environment in which the species is immersed,
one can express its propensity to donate or accept fractional
amounts of charge in terms of the square of the chemical
potential, divided by the hardness, leading to the concepts of
electrodonating and electroaccepting powers. In contrast with
the derivation of Parr, Von Szentpa´ly, and Liu,4 the present
approach shows that this response can be established by
considering a vicinity of points close to the reference system,
so that it is not necessarily linked to the point of electron
saturation, and that, if one does not distinguish the left and right
first derivatives of the energy with respect to the number of
electrons, the index that measures the propensity to donate
charge becomes equal to the index that measures the propensity
to accept charge.

The second conclusion is related with the new interpolation
scheme, which shows that one may keep a simple quadratic
charge-transfer model in terms of chemically meaningful
quantities as the chemical potential (electronegativity) and the
hardness but at the same time differentiate the response of the
system when it donates or accepts charge, through the chemical
potential values ofµ- and µ+. This differentiation may be
important in the description of donor-acceptor type interactions,
and particularly, in those related with donation and back-
donation.

The third conclusion is related to the analysis performed to
derive the local reactivity indexes. The fact that the Fukui
function appears as a consequence of a variational principle
provides a strong support to the local philicity index. Addition-
ally, one can see that eqs 20 and 21 may turn out to be useful
to describe, at the local level, donor-acceptor processes.
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